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Abstract

When should a robot act and when should it think? Reactive systems always act,thinking

only long enough to "look up" the action to execute. Traditional planning systems think a lot,

and act only after generating fairlyprecise plans. Each represents an endpoint on a spectrum.

When should a robot act and when should it think?

In this paper, it is suggested that this question is best addressed in the context of systems

that learn. It is argued that primitive forms of reasoning, likeanticipation, play an important

role in reducing the cost of learning and that the decision to act or think should be based on

the uncertainty associated with the utilityof executing an action in a particular situation.

We present an architecture for an adaptable reactive system and show how it can be aug-

mented with a simple anticipation mechanism that can substantially reduce the cost and time

of learning.

1 Introduction

Much of the earliest research on intelligent robotics viewed robot control primarily as a two stage

process of plan generation and execution. During plan generation the system reasons about the

world in order to construct a plan that is followed during execution. Plan generation was considered

the difficult, intelligent part of the problem; and received the most attention [13, 7, 15, 16, 18, 19, 5].

Plan execution, on the other hand, was considered more straightforward, less intelligent; and until

recently received much less attention [6, 20]. Unfortunately, this two stage reason then act model

for robot control has been shown to have several limitations, including: an inability to adequately

modeI the effects of actions (variants of the frame problem)[10], an inability to adapt plans based

on unexpected opportunities and contingencies (lack of flexibility)[1], and an inability to generate

plans quickly (computational intractability) [5].

These problems have recently led to the emergence of Reactive Systems. These systems are

primarily concerned with responsiveness and competence, emphasizing the timely generation of ap-

propriate behavior in a wide variety of situations. Instead of relying on costly symbolic reasoning,

reactive systems depend on precompiled knowledge about how to behave given a particular situa-

tion. Instead of following an explicit plan, generated by a planner, reactive systems use information

present in the world (and sometimes a small amount of internal state), as an index to "look up"

the action to execute next [1, 9, 8, 17, 2, 4, 12]. Another interesting property of some of these

systems is that they contain no centralized, sequential controller. Instead, the parallel interaction

*This work was supported in part by NSF research grant no. DCR-8602958 and in part by NIH Public Health
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of a number of relatively simple, semi-independent subsystems leads to the emergence of intelligent
behavior (Especially see [1, 3, 2]).

l_eactive systems raise a number of important new issues. One issue is adaptability, which current

reactive systems lack. Currently, knowledge about decision making is built into the system a priori.

This precludes the system from exploiting unanticipated structure in the problem domain to improve
its performance. Although machine learning has received considerable attention for quite some time,

little work has been done to integrate machine learning results with reactive systems. A second issue

is the relationship between reasoning and reacting[14]. From the standpoint of a cognitive model,

reasoning is important. Introspectively, it is clear that humans contemplate the effects of actions,

anticipate the future, and build and execute plans. It seems inevitable that highly intelligent robots

must eventually incorporate mechanisms for anticipation and planning; but the role of reasoning in
reactive systems is unclear. Current reactive systems do not include mechanisms for reasoning.

This paper claims that the role of reasoning in reactive systems is best addressed in the context of

systems that learn. We argue that primitive forms of projection and anticipation may have evolved

out of the need to minimize the cost and time associated with learning. Also, we define an adaptable

reactive system that is based on the classifier systems described by Holland et. hi.Ill]. The system

is massively parallel and relies on rule priorities to make decisions. Priorities are approximations

of the expected utility of executing a rule's action. The system learns by adding and deleting rules

and by adjusting rule priorities. Although the system may eventually learn to perform optimally,
the time and cost of learning optimal behavior may be prohibitively expensive. To reduce this cost

a simple projection mechanism is introduced. Projection allows the system to predict the effects of

actions and to use those predictions to reduce uncertainty about the utility of executing an action.

In familiar situations, projection is almost useless, but in novel situations it can greatly aid decision

making. It is suggested that although primitive, this projection mechanism may be a precursor to
more complex forms of reasoning.

2 Adaptable Reactive Systems

2.1 The Importance of Adaptability

Most reactive systems reported to date are static. The knowledge used for decision making is
determined at design time and the performance of the system is the same after ten years of operation

as it is on the first day. Although the current interest in reactive systems is important to the

development of intelligent robotics, equally vital is that these systems be adaptive. There are several

reasons why adaptability is so important. First, the world is extremely complex. Even in limited
domainsit is unlikely that a robot designer can anticipate all the subtleties that affect behavior.

Second, the world is idiosyncratic. The world of each individual robot contains important features

that can be exploited to optimize performance, but which cannot be anticipated in advance. For

example, the spatial layout of a Mars rover's local environment cannot be anticipated, but can be

learned and used to increase the system's performance. Third, the world is dynamic; components

fail, objects move, objectives change. Without an ability to adapt, a once optimal system can become

useless. Evidently, non-adaptive systems are doomed to be useful only in small, static domains.

2.2 Adaptable Reactive Systems

Recently, Holland e_ hi. have proposed inductive mechanisms for adapting massively parallel rule

based systems. They have used these mechanisms to model various forms of learning, from classical

conditioning to scientific discovery[11]. One application of these elegant ideas is to adaptable reactive

systems. By an adaptive reactive system we mean a massively parallel, adaptive rule based, system
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which controls a robot by repeatedly examining the current sensory inputs, and using its rules to
reactively pick and execute an action. Formally, an adaptable reactive system (or ARS) is defined

by the tuple < S,C,E,D >. S = {sl,s2, ...,sn} is a set of atomic propositions describing the
current state of the world and C = {cl,c2,...,ct} is the set of actions the system can execute.

E ---- {el, e2, ..., e2-} is a set of state utility estimates. There is one utility estimate, era, for each

world state, m E W, where W is the set of world states. Intuitively, the utility of a state is a
measure of the value of being in that state. Since in general the robot does not know the utility of a

state a priori, the utility estimates are approximations to the actual state utilities. The estimates are

incrementally improved using a technique known as the bucket brigade algorithm. D = {dr, d2, ..., dk}

is a set of production rules of the form: di : Pi "_ Gi, where Pi is a sentence constructed out of the

atomic propositions S and the connectives A, V,-_ in the usual way, the action Gi E C is a single

executable action, and pi is a priority value used to guide decision making.

An ARS operates as follows. At each time step (or trial), the system is presented with an input
pattern describing the state of the world. The pattern is used to evaluate the conditions (LHS) of

the production rules. The set of rules whose conditions are satisfied on a given trial are said to be

active. An active rule represents a tendency for the system to execute the action associated with

that rule. For example, the rule: Sl A s2 -* cl says "If sl A s2 is true in the current situation then try
to execute action c1." On each trial, multiple rules are likely to become active and several actions

may be suggested for execution. The system is allowed to only execute one action per trial and uses

a priority based bidding mechanism to choose the action to execute. The bidding mechanism works

as follows: on each trial, an active rule is a bidder if there is no other active rule whose condition

is more specific. Each bidder makes a bid for its associated action. A bid contains an action and a
priority. After all the bids are in, the bids are tallied and a total bid for each action is determined.

The total bids are then used to probabilistically choose the action to be executed. For example, one

means of determining the action to execute is to assign a probability to each action on a per trial

basis that equals the normalized sum of the bids received for that action. That is,

pr(al) -- _jEB,, PJ (1)
_-_kEB Pk

where pr(ai) is the probability that the system chooses to execute action ai, Bal is the set of bidders

who bid for action ai, B is the set of all bidders, and pj is the priority of bid j. A rule is said to
have executed in a trial if it is active and its action is executed.

Clearly, rule priorities play a crucial role in determining system performance. How are priorities

assigned? Utility estimates are used to determine rule priorities. The priority of a rule is adjusted

to approximate the expected utility estimate of the state that results from executing the rule. That

is,

p, em-pr(m (e)
mEW

where pr(m I di) is the probability that the system will be in state m at time t + 1 given that it

executes rule di at time t. A simple algorithm for computing a rule's priority is to think of the utility
estimates as supplying a form of internal reenforcement. That is, in each trial the system executes

an action and gives itself an internal reenforcement equal to the utility estimate of the resulting

state. This reenforcement is used to incrementally adjust the priority according to the following
rule: . .

pi(t + 1) = f 7e(t + 1) + (1 - 7)pi(t) if rule di is executed in trial tpi(t) otherwise (3)

where e(t + 1) is the utility estimate of the resulting world state at time t + 1 and 3' is a constant that

geometrically decreases the weight given to trials that occurred long ago. The basic architecture

for an ARS that uses utility estimates for internal reenforcement is shown in Figure 1. Using this
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Figure 1: The basic architecture of an adaptable reactive system, (AKS).

priority assignment scheme, it is easy to see that if the system has good utility estimates it will
tend to execute those actions that maximize the expected utility. The trick then is to define an

appropriate utility function and a mechanism for learning it.

Although any number of utility functions can be defined, a good approach is to define the utility

of a state to be the expected reward of possible futures that begin in that state. That is, suppose
that an external reward is associated with each world state, and that the robot's objective is to

obtain as much reward as possible. Intuitively, the robot wants to be in or "near" states that have

a high reward associated with them, and the utility of a state should reflect this preference.

Formally, a possible future for the robot, p, is a sequence of states and actions, m0, a0, ml, at, ...,
where rnl is the state of the environment at time ti and ai is the action executed by the system at

time ti, respectively. Further the utility of a possible future is a weighted sum of the reward received

by the system upon following that possible future, namely:

oo

up= .(4)
i=0

where, Up is the utility of possible future p, /_ is a constant used to geometrically diminish the
importance of states on the path that are far into the future, and r(mi) is the external reward

received by the system in state mi.

The utility of a state is then defined as the expected utility of possible futures that begin in that

state. That is,

U,_ = _ Uppr(p lm ) (5)
p E F,n

where Urn is the utility of state m, Frn is the set of possible futures that begins in state rn, and

pr(p I m) is the probability that possible future p is followed given that the system starts in state
m. Given this definition of utility, it can be seen that by maximizing its expected utility, a system

also approximately maximizes its expected reward.

As mentioned above the system doesn't know the state utilities a priori. Instead utilities are

learned as the system experiences the world and receives external rewards. At any given time,

the utility estimates, E, represent the system's best approximation of the state utilities. Utility
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estimates are incrementally adapted using the bucket brigade algorithm described by Holland et.

al.[11]. The basic idea behind the bucket brigade algorithm is that state utilities are related by the
following system of equations:

Vr. W[ m = r(m) +  'pr(m' Im)] (6)
rn_EW

where um is the utility of state m, and pr(m _ I m) is the probability that state m _ is obtained at
time t + 1 given the system is in state rn at time t. The bucket brigade algorithm makes use of these

equations to incrementally build up approximations of a state's utility based on approximations of

other states' utilities. Although the details of the bucket brigade algorithm are extremely interesting,
for the purposes of this paper, it is sufficient to know that such an algorithm exists and that a
massively parallel implementation is realizable.

In addition to estimating state utilities and modifying rule priorities, the system can adapt by
generating new rules and replacing old "less useful" ones. Although the algorithms for this foxm of

learning are important, they are not central to this paper and therefore will not be discussed. It is

sufficient to say, that at any given time only a subset of possible rules are actually in the system

(due to space constraints) and that as the system learns, rules are introduced and deleted in way
that tends to keep around those rules that contribute most to the system's performance.

2.3 Stacking Blocks

To illustrate the ideas presented above, consider a robot that plays the following game. The robot

sits in front of a table that has three blocks on it: A, B, and C. The robot can manipulate the

blocks and arrange them in any configuration of stacks it likes. When the robot is happy with the
arrangement of blocks it presses a small button near the edge of the table and receives a reward tl_at

is commensurate with the arrangement of blocks on the table. After the robot receives a reward,

the blocks are randomly "scrambled" for another round. The robot's objective is to maximize its
overall reward.

To formalize this game the sensory propositions S, the available actions A, and the reward
function r must be defined. Suppose the robot has the following sensory propositions: S = ON U

CLEAR U LEVER. Here ON is a set of propositions describing whether one block is on top of
another or not:

ON = {ON(A, B), ON(A, C), ON(A, Table), ON(B, A)...}

where ON(i, j) is true iff block i is on block j; CLEAR is a set of propositions that describe whether
or not a block has another block on top of it:

CLEAR = {CLEAR(A), CLEAR(B), CLEAR(C)};

and LEVER is a proposition that is true just when the robot has pushed the lever to receive the

reward. Suppose further that the robot can execute the following actions: A ---- PUSHLEVER O

MOVE, where PUSH_LEVER is an action for pushing the reward lever and MOVE is a set of
actions for placing blocks on top of each other and on the table:

MOVE = {MOVE(A, B), MOVE(A, C), MOVE(A, Table), MOVE(B, A), ...}

Here MOVE(i,j) represents the action of placing block i on top of object j. Assume that both

the block being moved and the target object must be clear for the action to successfully complete.

Otherwise, assume the action fails and the configuration of blocks remains unchanged. Finally,

suppose the reward function is defined as follows: If the reward lever is up (ie LEVER = T) then
the reward is zero for all block arrangements. If the reward lever is down, then the reward value is
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Figure 2: Five states of the block stacking game. In the upper left hand corner of each frame is

the utility value and the utility estimate associated with the state. Also shown is the reward value

associated with the state with the block configuration shown but with the reward lever depressed.
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No. Rule p States Active

1 ON(B, A) A ON(C, Table) A ON(A, Table) A _LEVER_DOWN ---*PUSH 129 1
2 ON(A, Table) A ON(B, A) A ON(C, B) A -_LEVER_DOWN --* PUSH 37 2
3 ON(A, Table) A ON(B, A) A CLEAR(C) A --,ON(C, Table) A -_ON(C, A) 109 2

MOVE(C, Table)
4 ON(B, Table) A ON(A, Table) A CLEAR(B) A ON(C, A) _ PUSH 132 3
5 --og(C, Table) ACLEAR(C) --* MOVZ(C, Table) 75 2,3,4,+
6 ON(A, Table) A ON(B, Table) _ PUSH 65 3, 4, 5, +
7 CLEAR(A) A CLEAR(C) _ MOVE(C, A) 72 4, 5, +

Table 1: Typical rules from an ARS robot playing the block stacking game. Rules are numbered
in column 1 and and shown in column 2. Rule priorities are shown in column 3 and the states in

Figure 2 in which the rule is active are listed in column 4. The first four rules are specific, the last

three are general.

100 if block A is on the table with another block on top of it, and the third block is on the table.

Otherwise the reward is 5.

Figure 2 shows five frames each representing a possible world state. The utility value u, and the
utility estimate e, for each state is shown in the upper left hand corner of each frame. The utility

value is fixed when the game is defined but is unknown to the robot. The utility estimate is the

robot's model of the utility function and changes as the robot plays the game, based on the bucket

brigade algorithm. Also shown in the upper left hand corner is the reward value associated with
the state with the block configuration shown but with the reward lever in the down position. The

two states with the reward lever down and the block configurations shown in frames 1 and 3 are the

only states where the robot receives a reward of 100.

Of the five states shown, states 1 and 3 have the highest utilities. Intuitively this follows since in

these states all the robot has to do to receive a large reward is press the reward lever. The utilities

of the states 2, 4, and 5 are somewhat less since the robot has to go further to receive a large reward.

The utility estimates shown in the figure indicate that the system has a fairly good model of the

utility function.

A partial list of rules for a robot playing the game' is shown in Table 1. Although this list is not

complete it is representative of the kinds of rules the system will generate. The first four rules are

very specific. In each of these rules, the condition is satisfied in only one state (rule 1 is satisfied in

state 1, rules 2 and 3 in state 2, and rule 3 in state 3). Rules 5 - 7 are more general and are satisfied

in several states. Specific rules are important for encoding knowledge about the correct action to
take in familiar situations, because they are satisfied only in very specific situations and are likely to

have good utility estimates. Specific rules, however, are less useful for dealing with novel situations

since they are less likely to be become active. General rules are the opposite; they are active more

often_ lbu_ are less useful in familiar situations. The reason they are less useful in familiar situations

is that the:_n_ernal reenforcement they receive tends to be highly variable and their priorities are less

likely to reflect the actual! uti.lity of executing an action in a particular situation. Figure 3 illustrates
this point by' showing_tt4at:, the priority of a specific rule is an average of utilities over a very small

number of stateswhile the priority of a general rule averages utilities over many states. In general,

an ideal rule is one that 1)iconsistent_y receives the same reenforcement (low variability) and 2) is

applicable in many states (abstract)'.. Specific and general rules tend to have one or the other of
these properties. As the robot plays the game i_ wi,I_ tend to generate more and more specific rules

as it learns about the state space: Initially, general rules are good since they represent heuristics or

tendencies that lead to good payoffs. However, they are eventually replaced by more specific rules

(with less variable reenforcement) that are particular to the idiosyncrasies of particular states.

Toillustrate the basic operation of the system, suppose the world is currently in state 2. At the
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Figure 3: The priority of a general rule is the average utility of many possible futures since the rule
is satisfied in may states. The priority of a specific rule, however, is an average over many fewer

states and therefore is likely to have a smaller variance.

beginning of the trial, the sensory propositions are set and used to evaluation rule conditions. In
state 2 rules 2, 3, and 5 are satisfied and become active. Of these rules, 2 and 3 are most specific and

bid for control. Rule 5 is a generalization of rule 3 and therefore is a non-bidder. Since rules 2 and 3
call for different actions, the system probabilistically decides whether to execute MOVE(C, Table)

or PUSH. That is, according to Equation (1):

pr(MOYE(C, Table)) -- Ps _ 109 = 0.75 (7)
Pa + P_ 109 + 37

and

pr(PUSH) = P2 37 : 0.25 (8)
P3 + P2 109 + 37

where pr(MOVE(C, Table) and pr(PUSH) are the probabilities of executing the move and push

actions respectively.

Suppose, in this case that the system decides to execute MOVE(C, Table). Then after moving
C, the world is in state 1 and the priorities of rules 3 and 5 are updated based on the utility estimate

for state 1, namely el -- 130. The priority of rule 5 is updated because its condition is satisfied and
the action chosen was consistent with the action specified by the rule. Once the system is in state

1, based on rule 1, it is likely to push the reward lever and receive a sizable reenforcement.

3 Anticipation in Systems that Learn

3.1 Why anticipation is good

Almost all learning systems repeat the following cycle again and again: The system senses the

input, decides on and executes an action, receives feedback based on the action, and adjusts itself
to better its performance. The problem is that if the system learns slowly it must endure a lot

of negative reenforcement. Learning is expensive. Using a faster learning algorithm is one way
to reduce this cost, anticipalion is another. Here, anticipation means the ability to predict future

states by projecLing the effects of actions. When a system without anticipation encounters a novel

situation, where it doesn't have a good estimate of the utility of possible actions, it must randomly

choose an action, suffer the consequences, learn and go on. In environments where wrong moves can

be catastrophic, systems without anticipation are doomed to suffer. If a system can recognize that
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Figure 4: By entering states ml and m2 from states m3, m4, and ms on previous trials, the system

has learned that ml has high utility and that m2 has low. Entering the new situation, ran, a system

without anticipation must rely on general rules which may be unreliable. A system with anticipation,
however, can project the effects of possible actions and obtain better utility estimates, which result
in better decisions.

it is in an unknown situation and project the effects of its actions, it may be able to obtain a better

estimate of the utility of executing an action in that particular situation.

Figure 4 illustrates the idea. Suppose that it has been determined with good certainty that

states ml and rn2 have very high and very low utilities respectively. The certainty of these estimates

could be based on experience gained while visiting ml and m2 from states m3, rn4, and m6. Further

suppose the system has found itself in the novel state, ran, for which it has only a rough estimates

of the utilities of executing actions. These rough estimates come from "general" rules that are
developed while executing in similar situations, like states ml and mj. Without anticipation, the

system must rely on its general rules to guide its behavior. In this case, there is a good chance that

the system will make a poor decision and suffer. If the system is capable of projecting the effects of

actions, then it can "internally" explore its options by looking at the utility estimates of projected

states, and feed back those estimates to temporarily adapt rule priorities. In the example above, the

system might simulate executing action a2 to find it yields state mu; use the low utility estimate
of m2 to temporarily degrade the priority of the rules that caused au to be executed; evaluate the

_ules again; simulate action al; find it leads to a high utility state; temporarily upgrade the priority

of'those rules; and finally execute al. Of course, a projection can be more than one step into the

future. If the utilities of the projected states are themselves uncertain, the system can continue to
project until it reaches a state that has a stable estimate.

In the context of the block stacking example given above, state 4 is a relatively novel state since

only general rules are active in this state; in this case rules 5, 6 and 7. Notice how the priorities
associated with each of these rules is roughly an average of the utility estimates of the states that

are obtained after executing the rule any time its condition is satisfied. For any given activation of

these rules, the actual internal reenforcement received may vary wildly. For example executing rule
5 in state 2 yields a reenforcement of 130, while executing rule 5 in state 4 yields a reenforcement

of only 60. Using anticipation, the system can predict the low yield obtained by executing rule 5 in
state 4 and can temporarily lower its priority. This in turn leads to the anticipation of the effect of

rule 7, which yields a high internal reenforcement when executed in state 4. This finally leads to a
temporary increase in the priority of rule 7, and eventually causes it to be executed.

As can be seen from the above examples, the variance in the internal reenforcement received by
a rule is crucial for determining whether to act or anticipate. If the variance is low, the priority is a
good approximation of the internal reenforcement the system is likely to receive when it executes the
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Figure 5: The ARS architecture augmented with a projection mechanism. In unfamiliar situations,

where the uncertainty about the utility of an action is high, the system projects the effects of its
actions to reduce uncertainty.

action. In this case, anticipation isn't very useful because it will just yield the same result. However

if the variance is high, the actual reenforcement received may be very different than the average.
In this case, anticipation is useful since it can lead to a much better approximation of the utility of

executing the action in a particular situation.

3.2 Adding Anticipation to the ARS architecture

To add an anticipation mechanism to the ARS architecture, rule priorities are augmented with a
variance value, cri, which is an estimate of the variance in the internal reenforcement received when

the rule executes. Similarly, a variance value is also maintained for the utility estimates associated
with each state. 1 Finally, a prediction mechanism is added that maps states and actions into

predicted states. 2 The resulting architecture is shown in Figure 5.

The basic algorithms implemented by the architecture are given below:

Action Selection Algorithm

For each trial:

1. determine the active rules;

2. determine the bidders (most specific rules);

3. probabilistically pick an action to execute (based on current priorities and priority variances);

4. If the variance associated with the chosen action is low enough, say below V_thres then execute
the action; otherwise:

(a) project the effects of executing the action;

1 The algorithm for determining utility variances is simple, and based on a slight modification of the Bucket Brigade
algorithm.

2 In general predictions must be learned as well. However for the purposes of this paper, we assume prediction
knowledge is known a priori.
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(b) use the results of the projection to temporarily adjust the priorities and variances of active
rules, and

(c) go to Step 3;

Projection Algorithm

For each projection:

1. Based on the current world state and knowledge about the effects of actions, predict the state of
the world after executing the action;

2. If the uncertainty about the prediction is too high, say above P_thres, then quit the projection

and return a degraded priority value; otherwise,

3. If the variance of the utility of the predicted state is low enough, say below V_thres, then quit

the projection and return the utility of the predicted state (degraded by/3) and its variance

as new estimates of the action's priority and variance respectively; otherwise,

4. Use the current predicted state as the basis for another projection.

There are two reasons to terminate a projection. First, if there is a large uncertainty about

the results of the projection, then the projection may as well terminate because further projection

probably won't help reduce uncertainty. Second, if the projection has lead to a state with a stable

utility estimate (low variance), then the projection should terminate because this information can
be used to lower the uncertainty and further projection is not likely to be more useful.

4 Summary and Future Work

In this paper, an adaptable reactive system was presented. It was shown that by adding a sim-
ple anticipation mechanism the cost of learning could be reduced by allowing the system to avoid

undesirable situations. It was argued that the decision to act or project should be based on the

uncertainty in the utility of executing an action in a particular state. Using anticipation this uncer-
tainty is reduced by projecting into the future until a state with a stable utility is obtained. This
utility is then used to derive a more certain estimate.

As of this writing, empirical results regarding the savings gained by adding projection are not

available. We are currently in the process of implementing a system that plays the block stacking

game. There are also several other directions for future work. One limitation of the current system

is that the sensory and motor systems are binary. We hope to replace sensory propositions with
semi-continuous variables, and augment the motor system to allow multiple simultaneous actions.

Abstraction is another area that needs attention. In the current system projections are one

"primitive" action at a time; it would be interesting to develop an abstraction mechanism that

allowed projection over "abstract" actions. Finally, short term memory has been ignored: It was
assumed that the sensory information available to the system was sufficient to define the state of

the world. This is fallacious in general and memory is necessary to overcome this simplification. It

is also interesting to speculate about how memory could be coupled with projection to lead to more
complex forms of reasoning.
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